Johnny
Abstract:We investigate episodic Markov Decision Processes with heavy-tailed feedback (HTMDPs). Existing approaches for HTMDPs are conservative in stochastic environments and lack adaptivity in adversarial regimes. In this work, we propose algorithms HT-FTRL-OM and HT-FTRL-UOB for HTMDPs that achieve Best-of-Both-Worlds (BoBW) guarantees: instance-independent regret in adversarial environments and logarithmic instance-dependent regret in self-bounding (including the stochastic case) environments. For the known transition setting, HT-FTRL-OM applies the Follow-The-Regularized-Leader (FTRL) framework over occupancy measures with novel skipping loss estimators, achieving a $\widetilde{O}(T^{1/α})$ regret bound in adversarial regimes and a $O(\log T)$ regret in stochastic regimes. Building upon this framework, we develop a novel algorithm HT-FTRL-UOB to tackle the more challenging unknown-transition setting. This algorithm employs a pessimistic skipping loss estimator and achieves a $\widetilde{O}(T^{1/α} + \sqrt{T})$ regret in adversarial regimes and a $O(\log^2(T))$ regret in stochastic regimes. Our analysis overcomes key barriers through several technical insights, including a local control mechanism for heavy-tailed shifted losses, a new suboptimal-mass propagation principle, and a novel regret decomposition that isolates transition uncertainty from heavy-tailed estimation errors and skipping bias.
Abstract:Long-context LLM agents must access the right evidence from large environments and use it faithfully. However, the popular Needle-in-a-Haystack (NIAH) evaluation mostly measures benign span localization. The needle is near-unique, and the haystack is largely irrelevant. We introduce EverMemBench-S (EMB-S), an adversarial NIAH-style benchmark built on a 326M-token MemoryBank. While the full MemoryBank spans 326M tokens for retrieval-based (RAG) evaluation, we evaluate native long-context models only at scales that fit within each model's context window (up to 1M tokens in this work) to ensure a fair comparison. EMB-S pairs queries with collision-tested near-miss hard negatives and gold evidence sets spanning one or more documents, validated via human screening and LLM verification. We also propose a decoupled diagnostic protocol that reports evidence access (document-ID localization) separately from end-to-end QA quality under full-context prompting. This enables consistent diagnosis for both native long-context prompting and retrieval pipelines. Across a reference-corpus ladder from domain-isolated 64K contexts to a globally shared 326M-token environment, we observe a clear reality gap. Systems that saturate benign NIAH degrade sharply in evidence access under semantic interference. These results indicate that semantic discrimination, not context length alone, is the dominant bottleneck for long-context memory at scale.
Abstract:Sound source localization (SSL) demonstrates remarkable results in controlled settings but struggles in real-world deployment due to dual imbalance challenges: intra-task imbalance arising from long-tailed direction-of-arrival (DoA) distributions, and inter-task imbalance induced by cross-task skews and overlaps. These often lead to catastrophic forgetting, significantly degrading the localization accuracy. To mitigate these issues, we propose a unified framework with two key innovations. Specifically, we design a GCC-PHAT-based data augmentation (GDA) method that leverages peak characteristics to alleviate intra-task distribution skews. We also propose an Analytic dynamic imbalance rectifier (ADIR) with task-adaption regularization, which enables analytic updates that adapt to inter-task dynamics. On the SSLR benchmark, our proposal achieves state-of-the-art (SoTA) results of 89.0% accuracy, 5.3° mean absolute error, and 1.6 backward transfer, demonstrating robustness to evolving imbalances without exemplar storage.
Abstract:Social media platforms facilitate echo chambers through feedback loops between user preferences and recommendation algorithms. While algorithmic homogeneity is well-documented, the distinct evolutionary pathways driven by content-based versus link-based recommendations remain unclear. Using an extended dynamic Bounded Confidence Model (BCM), we show that content-based algorithms--unlike their link-based counterparts--steer social networks toward a segregation-before-polarization (SbP) pathway. Along this trajectory, structural segregation precedes opinion divergence, accelerating individual isolation while delaying but ultimately intensifying collective polarization. Furthermore, we reveal a paradox in information sharing: Reposting increases the number of connections in the network, yet it simultaneously reinforces echo chambers because it amplifies small, latent opinion differences that would otherwise remain inconsequential. These findings suggest that mitigating polarization requires stage-dependent algorithmic interventions, shifting from content-centric to structure-centric strategies as networks evolve.
Abstract:Accurate segmentation of cervical structures in transvaginal ultrasound (TVS) is critical for assessing the risk of spontaneous preterm birth (PTB), yet the scarcity of labeled data limits the performance of supervised learning approaches. This paper introduces the Fetal Ultrasound Grand Challenge (FUGC), the first benchmark for semi-supervised learning in cervical segmentation, hosted at ISBI 2025. FUGC provides a dataset of 890 TVS images, including 500 training images, 90 validation images, and 300 test images. Methods were evaluated using the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and runtime (RT), with a weighted combination of 0.4/0.4/0.2. The challenge attracted 10 teams with 82 participants submitting innovative solutions. The best-performing methods for each individual metric achieved 90.26\% mDSC, 38.88 mHD, and 32.85 ms RT, respectively. FUGC establishes a standardized benchmark for cervical segmentation, demonstrates the efficacy of semi-supervised methods with limited labeled data, and provides a foundation for AI-assisted clinical PTB risk assessment.
Abstract:Generative models for financial time series often create data that look realistic and even reproduce stylized facts such as fat tails or volatility clustering. However, these apparent successes break down under trading backtests: models like GANs or WGAN-GP frequently collapse, yielding extreme and unrealistic results that make the synthetic data unusable in practice. We identify the root cause in the neglect of financial asymmetry and rare tail events, which strongly affect market risk but are often overlooked by objectives focusing on distribution matching. To address this, we introduce the Stylized Facts Alignment GAN (SFAG), which converts key stylized facts into differentiable structural constraints and jointly optimizes them with adversarial loss. This multi-constraint design ensures that generated series remain aligned with market dynamics not only in plots but also in backtesting. Experiments on the Shanghai Composite Index (2004--2024) show that while baseline GANs produce unstable and implausible trading outcomes, SFAG generates synthetic data that preserve stylized facts and support robust momentum strategy performance. Our results highlight that structure-preserving objectives are essential to bridge the gap between superficial realism and practical usability in financial generative modeling.
Abstract:Explainable AI (XAI) in high-stakes domains should help stakeholders trust and verify system outputs. Yet Chain-of-Thought methods reason before concluding, and logical gaps or hallucinations can yield conclusions that do not reliably align with their rationale. Thus, we propose "Result -> Justify", which constrains the output communication to present a conclusion before its structured justification. We introduce SEF (Structured Explainability Framework), operationalizing professional conventions (e.g., CREAC, BLUF) via six metrics for structure and grounding. Experiments across four tasks in three domains validate this approach: all six metrics correlate with correctness (r=0.20-0.42; p<0.001), and SEF achieves 83.9% accuracy (+5.3 over CoT). These results suggest structured justification can improve verifiability and may also improve reliability.
Abstract:Financial question answering (QA) over long corporate filings requires evidence to satisfy strict constraints on entities, financial metrics, fiscal periods, and numeric values. However, existing LLM-based rerankers primarily optimize semantic relevance, leading to unstable rankings and opaque decisions on long documents. We propose FinCards, a structured reranking framework that reframes financial evidence selection as constraint satisfaction under a finance-aware schema. FinCards represents filing chunks and questions using aligned schema fields (entities, metrics, periods, and numeric spans), enabling deterministic field-level matching. Evidence is selected via a multi-stage tournament reranking with stability-aware aggregation, producing auditable decision traces. Across two corporate filing QA benchmarks, FinCards substantially improves early-rank retrieval over both lexical and LLM-based reranking baselines, while reducing ranking variance, without requiring model fine-tuning or unpredictable inference budgets. Our code is available at https://github.com/XanderZhou2022/FINCARDS.
Abstract:Automated essay scoring (AES) is a challenging task in cross-prompt settings due to the diversity of scoring criteria. While previous studies have focused on the output of large language models (LLMs) to improve scoring accuracy, we believe activations from intermediate layers may also provide valuable information. To explore this possibility, we evaluated the discriminative power of LLMs' activations in cross-prompt essay scoring task. Specifically, we used activations to fit probes and further analyzed the effects of different models and input content of LLMs on this discriminative power. By computing the directions of essays across various trait dimensions under different prompts, we analyzed the variation in evaluation perspectives of large language models concerning essay types and traits. Results show that the activations possess strong discriminative power in evaluating essay quality and that LLMs can adapt their evaluation perspectives to different traits and essay types, effectively handling the diversity of scoring criteria in cross-prompt settings.
Abstract:Persistence diagrams (PDs) provide a powerful tool for understanding the topology of the underlying shape of a point cloud. However, identifying which points in PDs encode genuine signals remains challenging. This challenge directly hinders the practical adoption of topological data analysis in many applications, where automated and reliable interpretation of persistence diagrams is essential for downstream decision-making. In this paper, we study automatic significance detection for one-dimensional persistence diagrams. Specifically, we propose Topology Understanding Net (TUN), a multi-modal network that combines enhanced PD descriptors with self-attention, a PointNet-style point cloud encoder, learned fusion, and per-point classification, alongside stable preprocessing and imbalance-aware training. It provides an automated and effective solution for identifying significant points in PDs, which are critical for downstream applications. Experiments show that TUN outperforms classic methods in detecting significant points in PDs, illustrating its effectiveness in real-world applications.